References: Difference between revisions

From Cryptology City
Jump to navigation Jump to search
 
(3 intermediate revisions by the same user not shown)
Line 9: Line 9:
}}
}}
=== B ===
=== B ===
{{Reference
    |id=bbk03 |tag=BBK03
    |title=Digital fingerprinting codes: problem statements, constructions, identification of traitors
    |authors=A. Barg, G.R. Blakley, and G.A. Kabatiansky
    |journal=IEEE Transactions on Information Theory
    |srcdetail=2003
    |link=https://ieeexplore.ieee.org/abstract/document/1193796
}}
{{Reference
{{Reference
     |id=bmz19 |tag=BMZ19
     |id=bmz19 |tag=BMZ19
Line 16: Line 25:
     |srcdetail=2019
     |srcdetail=2019
     |link=https://www.iacr.org/archive/crypto2019/116940274/116940274.pdf
     |link=https://www.iacr.org/archive/crypto2019/116940274/116940274.pdf
}}
{{Reference
    |id=bs98 |tag=BS98
    |title=Collusion-secure fingerprinting for digital data
    |authors=D. Boneh and J. Shaw
    |journal=IEEE Transactions on Information Theory
    |srcdetail=1998
    |link=https://ieeexplore.ieee.org/abstract/document/705568/
}}
}}
=== C ===
=== C ===
Line 25: Line 43:
     |srcdetail=2020
     |srcdetail=2020
     |link=https://eprint.iacr.org/2020/1195
     |link=https://eprint.iacr.org/2020/1195
}}
{{Reference
    |id=cgks98 |tag=CGKS98
    |title=Private information retrieval
    |authors=B. Chor, O. Goldreich, E. Kushilevitz, and M. Sudan
    |journal=JACM
    |srcdetail=1998
    |link=https://dl.acm.org/doi/pdf/10.1145/293347.293350
}}
}}


Line 118: Line 145:
}}
}}
=== L ===
=== L ===
{{Reference
    |id=ln18 |tag=LN18
    |title=Yes, there is an oblivious RAM lower bound!
    |authors=K. G. Larsen and J. B. Nielsen
    |journal=CRYPTO
    |srcdetail=2018
    |link=https://eprint.iacr.org/2018/423
}}
{{Reference
{{Reference
     |id=lr88 |tag=LR88
     |id=lr88 |tag=LR88
Line 125: Line 161:
     |srcdetail=Volume 17, Number 2, 1988
     |srcdetail=Volume 17, Number 2, 1988
}}
}}
=== M ===
=== M ===



Latest revision as of 18:29, 21 July 2024

A

[CP07] Y. Chen and J. Flum. On parameterized path and chordless path problems., Proceedings of the IEEE Conference on Computational Complexity 2007, 250-263.

B

[BBK03] A. Barg, G.R. Blakley, and G.A. Kabatiansky. Digital fingerprinting codes: problem statements, constructions, identification of traitors, IEEE Transactions on Information Theory, 2003. https://ieeexplore.ieee.org/abstract/document/1193796

[BMZ19] J. Bartusek, F. Ma, and M. Zhandry. The Distinction Between Fixed and Random Generators in Group-Based Assumptions, CRYPTO, 2019. https://www.iacr.org/archive/crypto2019/116940274/116940274.pdf

[BS98] D. Boneh and J. Shaw. Collusion-secure fingerprinting for digital data, IEEE Transactions on Information Theory, 1998. https://ieeexplore.ieee.org/abstract/document/705568/

C

[CDH20] D. Cash, A. Drucker, and A. Hoover. A Lower Bound for One-Round Oblivious RAM, TCC, 2020. https://eprint.iacr.org/2020/1195

[CGKS98] B. Chor, O. Goldreich, E. Kushilevitz, and M. Sudan. Private information retrieval, JACM, 1998. https://dl.acm.org/doi/pdf/10.1145/293347.293350

[CHNVW16] A. Cohen, J. Holmgren, R. Nishimaki, V. Vaikuntanathan, and D. Wichs. Watermarking Cryptographic Capabilities, STOC, Pages 1115--1127, 2016. https://doi.org/10.1145/2897518.2897651

[CHS24] S. Cohen, A. Hoover, and G. Schoenbach. Watermarking Language Models for Many Adaptive Users, Preprint, . https://eprint.iacr.org/2024/759

D

[DH76] W. Diffie and M. E. Hellman. New Directions in Cryptography, IEEE Transactions on Information Theory, . https://ieeexplore.ieee.org/document/1055638

[DMO00] G. Di Crescenzo, T. Malkin, and R. Ostrovsky. Single Database Private Information Retrieval Implies Oblivious Transfer, EUROCRYPT, Pages 122--138, 2000. https://doi.org/10.1007/3-540-45539-6_10

E

[Elg85] T. ElGamal. A Public Key Cryptosystem and a Signature Scheme Based on Discrete Logarithm, IEEE Transactions on Information Theory, . https://ieeexplore.ieee.org/abstract/document/1057074

F

G

[GGM84] O. Goldreich, S. Goldwasser, and S. Micali. How to Construct Random Functions (Extended Abstract), FOCS, Pages 464--479, 1984. https://dl.acm.org/doi/abs/10.1145/6490.6503

[GO96] O. Goldreich and R. Ostrovsky. Software Protection and Simulation on Oblivious RAMs, Journal of the ACM (JACM), Volume 43, Number 3, Pages 431--473, 1996. https://doi.org/10.1145/233551.233553

H

[HILL99] J. Håstad, R. Impagliazzo, L. A. Levin, and M. Luby. A Pseudorandom Generator from any One-way Function, SIAM Journal on Computing, Volume 28, Number 4, Pages 1364--1396, 1999.


[HPPY24] A. Hoover, S. Patel, G. Persiano, and K. Yeo. Plinko: Single-Server PIR with Efficient Updates via Invertible PRFs, Preprint, . https://eprint.iacr.org/2024/318

I

J

K

[KO00] E. Kushilevitz and R. Ostrovsky. One-Way Trapdoor Permutations Are Sufficient for Non-trivial Single-Server Private Information Retrieval, EUROCRYPT, Pages 104--121, 2000. https://doi.org/10.1007/3-540-45539-6_9

L

[LN18] K. G. Larsen and J. B. Nielsen. Yes, there is an oblivious RAM lower bound!, CRYPTO, 2018. https://eprint.iacr.org/2018/423

[LR88] M. Luby and C. Rackoff. How to Construct Pseudorandom Permutations from Pseudorandom Functions, SIAM Journal on Computing, Volume 17, Number 2, 1988.


M

N

O

P

Q

R

[Reg05] O. Regev. On lattices, learning with errors, random linear codes, and cryptography, Journal of the ACM (JACM), 2005. https://dl.acm.org/doi/abs/10.1145/1568318.1568324

[RSA78] R. L. Rivest, A. Shamir, and L. M. Adleman. A Method for Obtaining Digital Signatures and Public-Key Cryptosystems, Communications of the ACM, Volume 21, Issue 2, 1978. https://dl.acm.org/doi/10.1145/359340.359342

S

[Sho94] P. W. Shor. Algorithms for quantum computation: discrete logarithms and factoring, Proceedings 35th annual symposium on foundations of computer science, . https://ieeexplore.ieee.org/abstract/document/365700

[Sho97] V. Shoup. Lower Bounds for Discrete Logarithms and Related Problems, EUROCRYPT, 1997. https://link.springer.com/chapter/10.1007/3-540-69053-0_18

T

U

V

W

X

Y

Z