References: Difference between revisions
(→R) |
No edit summary |
||
Line 25: | Line 25: | ||
|srcdetail=2020 | |srcdetail=2020 | ||
|link=https://eprint.iacr.org/2020/1195 | |link=https://eprint.iacr.org/2020/1195 | ||
}} | |||
{{Reference | |||
|id=cgks98 |tag=CGKS98 | |||
|title=Private information retrieval | |||
|authors=B. Chor, O. Goldreich, E. Kushilevitz, and M. Sudan | |||
|journal=JACM | |||
|srcdetail=1998 | |||
|link=https://dl.acm.org/doi/pdf/10.1145/293347.293350 | |||
}} | }} | ||
Revision as of 17:32, 19 July 2024
A
[CP07] Y. Chen and J. Flum. On parameterized path and chordless path problems., Proceedings of the IEEE Conference on Computational Complexity 2007, 250-263.
B
[BMZ19] J. Bartusek, F. Ma, and M. Zhandry. The Distinction Between Fixed and Random Generators in Group-Based Assumptions, CRYPTO, 2019. https://www.iacr.org/archive/crypto2019/116940274/116940274.pdf
C
[CDH20] D. Cash, A. Drucker, and A. Hoover. A Lower Bound for One-Round Oblivious RAM, TCC, 2020. https://eprint.iacr.org/2020/1195
[CGKS98] B. Chor, O. Goldreich, E. Kushilevitz, and M. Sudan. Private information retrieval, JACM, 1998. https://dl.acm.org/doi/pdf/10.1145/293347.293350
[CHNVW16] A. Cohen, J. Holmgren, R. Nishimaki, V. Vaikuntanathan, and D. Wichs. Watermarking Cryptographic Capabilities, STOC, Pages 1115--1127, 2016. https://doi.org/10.1145/2897518.2897651
[CHS24] S. Cohen, A. Hoover, and G. Schoenbach. Watermarking Language Models for Many Adaptive Users, Preprint, . https://eprint.iacr.org/2024/759
D
[DH76] W. Diffie and M. E. Hellman. New Directions in Cryptography, IEEE Transactions on Information Theory, . https://ieeexplore.ieee.org/document/1055638
[DMO00] G. Di Crescenzo, T. Malkin, and R. Ostrovsky. Single Database Private Information Retrieval Implies Oblivious Transfer, EUROCRYPT, Pages 122--138, 2000. https://doi.org/10.1007/3-540-45539-6_10
E
[Elg85] T. ElGamal. A Public Key Cryptosystem and a Signature Scheme Based on Discrete Logarithm, IEEE Transactions on Information Theory, . https://ieeexplore.ieee.org/abstract/document/1057074
F
G
[GGM84] O. Goldreich, S. Goldwasser, and S. Micali. How to Construct Random Functions (Extended Abstract), FOCS, Pages 464--479, 1984. https://dl.acm.org/doi/abs/10.1145/6490.6503
[GO96] O. Goldreich and R. Ostrovsky. Software Protection and Simulation on Oblivious RAMs, Journal of the ACM (JACM), Volume 43, Number 3, Pages 431--473, 1996. https://doi.org/10.1145/233551.233553
H
[HILL99] J. Håstad, R. Impagliazzo, L. A. Levin, and M. Luby. A Pseudorandom Generator from any One-way Function, SIAM Journal on Computing, Volume 28, Number 4, Pages 1364--1396, 1999.
[HPPY24]
A. Hoover, S. Patel, G. Persiano, and K. Yeo.
Plinko: Single-Server PIR with Efficient Updates via Invertible PRFs,
Preprint,
.
https://eprint.iacr.org/2024/318
I
J
K
[KO00] E. Kushilevitz and R. Ostrovsky. One-Way Trapdoor Permutations Are Sufficient for Non-trivial Single-Server Private Information Retrieval, EUROCRYPT, Pages 104--121, 2000. https://doi.org/10.1007/3-540-45539-6_9
L
[LR88] M. Luby and C. Rackoff. How to Construct Pseudorandom Permutations from Pseudorandom Functions, SIAM Journal on Computing, Volume 17, Number 2, 1988.
M
N
O
P
Q
R
[Reg05] O. Regev. On lattices, learning with errors, random linear codes, and cryptography, Journal of the ACM (JACM), 2005. https://dl.acm.org/doi/abs/10.1145/1568318.1568324
[RSA78] R. L. Rivest, A. Shamir, and L. M. Adleman. A Method for Obtaining Digital Signatures and Public-Key Cryptosystems, Communications of the ACM, Volume 21, Issue 2, 1978. https://dl.acm.org/doi/10.1145/359340.359342
S
[Sho94] P. W. Shor. Algorithms for quantum computation: discrete logarithms and factoring, Proceedings 35th annual symposium on foundations of computer science, . https://ieeexplore.ieee.org/abstract/document/365700
[Sho97] V. Shoup. Lower Bounds for Discrete Logarithms and Related Problems, EUROCRYPT, 1997. https://link.springer.com/chapter/10.1007/3-540-69053-0_18